Numerical

The locus of a point, which moves such that the sum of squares of its distances from the points (0, 0), (1, 0), (0, 1), (1, 1) is 18 units, is a circle of diameter d. Then d^2 is equal to ______.

Answer

Correct Answer is 16

Explanation

Let point P(x, y)

$$(PA)^2 + (PB)^2 + (PC)^2 + (PD)^2 = 18$$

$$x^{2} + y^{2} + x^{2} + (y - 1)^{2} + (x - 1)^{2} + y^{2} + (x - 1)^{2} + (y - 1)^{2} = 18$$

$$\Rightarrow 4(x^2 + y^2) - 4y - 4x = 14$$

$$\Rightarrow x^2 + y^2 - x - y - \frac{7}{2} = 0$$

$$d = 2\sqrt{\frac{1}{4} + \frac{1}{4} + \frac{7}{2}}$$

$$\Rightarrow d^2 = 16$$

Question 1: Let the tangents drawn from the origin to the circle $x^2 + y^2 - 8x - 4y + 16 = 0$ touch it at the point A and B. The (AB)² is equal to

(a) 32/5

(b) 64/5

(c) 52/5

(d) 56/5

Answer: (b)

Solution:

$$x^2 + y^2 - 8x - 4y + 16 = 0$$

Rearranging above equation, we get

$$(x - 4)^2 + (y - 2)^2 = 4$$

Centre = (4, 2) and

Radius = 2

$$OA = OB = 4$$

In triangle, OBC,

 $tan \theta = 4/2 = 2$

and $sin\theta = 2/\sqrt{5}$

In triangle, BDC

 $\sin\theta = BD/2 \Rightarrow BD = 4/\sqrt{5}$

Length of chord of contact = $AB = 8/\sqrt{5}$